Khayyam$98042$ - ترجمة إلى الهولندية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

Khayyam$98042$ - ترجمة إلى الهولندية

QUADRILATERAL WITH TWO EQUAL SIDES PERPENDICULAR TO THE BASE
Khayyam-Saccheri quadrilateral; Saccheri Quadrilateral; Khayyam–Saccheri quadrilateral; Khayyam quadrilateral
  • 160px
  • 160px
  • Saccheri quadrilaterals

Khayyam      
n. Kayam (Omar, Perzisch dichter en wiskundige)
Omar Khayyam         
  • left
  • left
  • Representation of the intercalation scheme of the Jalali calendar
  • "Cubic equation and intersection of conic sections" the first page of a two-chaptered manuscript kept in Tehran University.
  • calligraphic (taliq script)]] decoration on the exterior body of his mausoleum.
  • Persian Rubiyats]] of Omar Khayyam on one the faculty buildings of [[Leiden University]]
  • cubic]] ''x''<sup>3</sup>&nbsp;+&nbsp;2''x''&nbsp;= 2''x''<sup>2</sup>&nbsp;+&nbsp;2. The intersection point produced by the circle and the hyperbola determine the desired segment.
PERSIAN MATHEMATICIAN AND POET (1048–1131)
Umar Khayyam; Omar khayam; Khayam; Omar Kayyam; Omar Khayyám's Mathematics; Ghiyath al-Din Abu'l-Fath Omar ibn Ibrahim Al-Nisaburi Khayyámi; Khayyam; Omar the Tentmaker; Ghiyath al-Din Abu'l-Fath Omar ibn Ibrahim Al-Nisaburi Khayyami; Omar al-Khayyami; Ghiyath al-Din Abu'l-Fath Omar ibn Ibrahim Al-Nisaburi Khayyamii; Omar Kayam; Omar Kyam; Ömer Hayyam; Al-Khayyam; Ghiyās ol-Dīn Ab'ol-Fath Omār Ibn Ebrāhīm Khayyām Neyshābūrī; Omar of Khayyam; Ghiyās od-Dīn Abul-Fatah Omār ibn Ibrāhīm Khayyām Nishābūrī; Omar al Khayyami; Umar al-Khayyam; Omar Khayyam's Mathematics; Ghiyas od-Din Abul-Fatah Omar ibn Ibrahim Khayyam Nishaburi; Omer Hayyam; Ghiyas ol-Din Ab'ol-Fath Omar Ibn Ebrahim Khayyam Neyshaburi; Omar Khayam; Omar Khayan; Khayyám; Xayyam; Ghiyāth al-Dīn Abu'l-Fath ʿUmar ibn Ibrāhīm al-Nīsā-Būrī al-Khayyāmī; Khayyamian; Omar Khayyām; Omar Khayám; Khayám; Omar Khayyám; Ghiyath al-Din Abu'l-Fath Umar ibn Ibrahim Al-Nisaburi al-Khayyami; Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm al-Nīsābūrī al-Khayyāmī; Religious views of Omar Khayyam
n. Omar Khayyam (een dichter en wiskundige uit perzie,schreef "vierkanten",vierlijnige gedichten)

تعريف

Pascal's triangle
¦ noun Mathematics a triangular array of numbers in which those at the ends of the rows are 1 and each of the others is the sum of the nearest two numbers in the row above (the apex, 1, being at the top).

ويكيبيديا

Saccheri quadrilateral

A Saccheri quadrilateral (also known as a Khayyam–Saccheri quadrilateral) is a quadrilateral with two equal sides perpendicular to the base. It is named after Giovanni Gerolamo Saccheri, who used it extensively in his book Euclides ab omni naevo vindicatus (literally Euclid Freed of Every Flaw) first published in 1733, an attempt to prove the parallel postulate using the method Reductio ad absurdum. The Saccheri quadrilateral may occasionally be referred to as the Khayyam–Saccheri quadrilateral, in reference to the 11th century Persian scholar Omar Khayyam.

For a Saccheri quadrilateral ABCD, the sides AD and BC (also called the legs) are equal in length, and also perpendicular to the base AB. The top CD is the summit or upper base and the angles at C and D are called the summit angles.

The advantage of using Saccheri quadrilaterals when considering the parallel postulate is that they place the mutually exclusive options in very clear terms:

Are the summit angles right angles, obtuse angles, or acute angles?

As it turns out:

  • when the summit angles are right angles, the existence of this quadrilateral is equivalent to the statement expounded by Euclid's fifth postulate.
  • When the summit angles are acute, this quadrilateral leads to hyperbolic geometry, and
  • when the summit angles are obtuse, the quadrilateral leads to elliptical or spherical geometry (provided that also some other modifications are made to the postulates).

Saccheri himself, however, thought that both the obtuse and acute cases could be shown to be contradictory. He did show that the obtuse case was contradictory, but failed to properly handle the acute case.